ORIENTAL ${\sf Advanced}\; {\sf TGBT^{\sf TM}}\; {\sf technology}$ Monolithically integrated diode Excellent conduction and switching loss Excellent stability and uniformity Induction heating Soft switching applications OST20N135HRF uses advanced Oriental-Semi's patented Trident-Gate Bipolar Transistor (TGBTTM) technology to provide extremely low $V_{CE(sat)}$, low gate charge, and excellent switching performance. This device is suitable for resonant induction heating applications. | V _{CES, min} | 1350 V | |--|---------| | ${ m I}_{ m C,\ pulse}$ | 60 A | | V _{CE(sat)} , typ@V _{GE} =15 V | 1.6 V | | Q_g | 71.5 nC | | | | at T_j=25°C unless otherwise noted | Collector emitter voltage | V_{CES} | 1350 | V | | |---|-----------------------|------------|----|--| | Gate emitter voltage | V. | ±20 | V | | | Transient Gate emitter voltage, T _P ≤10μs, D<0.01 | - V _{GES} | ±30 | V | | | Continuous collector current ¹⁾ , T _C =25 °C | I _C | 40 | | | | Continuous collector current ¹⁾ , T _C =100 °C | 1C | 20 | A | | | Pulsed collector current ²⁾ , T _C =25 °C | I _{C, pulse} | 60 | Α | | | Diode forward current ¹⁾ , T _C =25 °C | | 40 | ^ | | | Diode forward current¹), T _C =100 °C | $ I_{F}$ | 20 | Α | | | Diode pulsed current²), T _C =25 °C | I _{F, pulse} | 60 | Α | | | Power dissipation³), T _C =25 ℃ | D | 290 | W | | | Power dissipation ³⁾ , T _C =100 ℃ | - P _D | 145 | W | | | Operation and storage temperature | T_{stg} , T_j | -55 to 150 | °C | | | IGBT thermal resistance, junction-case | $R_{\theta JC}$ | 0.43 | °C/W | |--|------------------|------|------| | Diode thermal resistance, junction-case | R _{θJC} | 0.43 | °C/W | | Thermal resistance, junction-ambient ⁴⁾ | R _{0JA} | 40 | °C/W | at T_j =25 °C unless otherwise specified | Total gate charge | Q_g | 71.5 | nC | I _C =20 A, | |-----------------------|----------|------|----|--------------------------| | Gate-emitter charge | Q_{ge} | 15.4 | nC | V _{CC} =1080 V, | | Gate-collector charge | Q_{gc} | 32.8 | nC | V _{GE} =15 V | - 1) Calculated continuous current based on maximum allowable junction temperature. - 2) Repetitive rating, pulse width limited by maximum junction temperature. - 3) Pd is based on maximum junction temperature, using junction-case thermal resistance. - 4) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_a =25 °C. 120 V_{CE}=20V V Figure 1. Typical output characteristics $(T_{vi}=25^{\circ}C)$ Figure 2. Typical transfer characteristics $(T_{vi}=25^{\circ}C)$ Figure 3. Typical capacitance $(V_{GE}=0V, f=1MHz)$ Figure 4. Typical gate charge Figure 5. Gate-emitter threshold voltage Figure 6. Typical collector-emitter voltage | TO247 | 30 | 11 | 330 | 6 | 1980 | |-------|----|----|-----|---|------| | OST20N135HRF | TO247 | yes | yes | yes | |--------------|-------|-----|-----|-----|